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“CMB-Slow” or How to Determine Cosmological
Parameters by Hand?

V. Mukhanov1

I derive analytically the spectrum of the CMB fluctuations. The final result for Cl is
presented in terms of elementary functions with an explicit dependence on the basic
cosmological parameters. This result is in a rather good agreement with CMBFAST for
a wide range of parameters around concordance model. This allows us to understand
the physical reasons for dependence of the particular features of the CMB spectrum
on the basic cosmological parameters and to estimate the possible accuracy of their
determination. I also analyze the degeneracy of the spectrum with respect to certain
combinations of the cosmological parameters.
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1. INTRODUCTION

After recombination the primordial radiation does not interact anymore with
the matter and most of the photons come to us without further scattering. Since
the radiation is extremely isotropic in nearly all angular scales, we conclude that
at the moment of recombination the universe was extremely homogeneous and
its temperature could not vary from place to place more than about few times in
thousandth of the percent.

On the other hand the origin of the large-scale structure requires the pres-
ence of small inhomogeneities in the distribution of the matter and therefore
the temperature of CMB should also vary a little bit. These variations are ob-
served today as the angular fluctuations of the CMB temperature (Bennett et al.,
2003). The expected fluctuations in a given angular scale are basically deter-
mined by the inhomogeneities on the spatial scales having today an appropri-
ate angular size if placed at the distance corresponding to the recombination
redshift.

The Hubble scale at recombination epoch plays especially important role,
distinguishing the inhomogeneities which are still frozen from those ones which
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already entered the horizon and therefore could be amplified by gravitational in-
stability. At the scales bigger than the Hubble size, the generated during inflation
perturbations remain unchanged. Therefore, observing the fluctuations on the an-
gular scales θ > 1◦, corresponding to super-Hubble scales at recombination, we
directly probe the primordial inflationary spectrum not influenced by the evolu-
tion. The perturbations which entered the horizon before the recombination evolve
in a rather complicated way. The transfer functions relating the initial spectrum
to the resulting one very much depends on the basic cosmological parameters,
and the shape of the CMB fluctuation spectrum at θ < 1◦ is very sensitive to the
exact values of these parameters. Therefore by measuring the fluctuations at small
angular scales, one can determine these parameters with a very good accuracy.

The recent observations of the CMB fluctuations (Bennett et al., 2003) give us
a hope that finally we will be able to determine the cosmological parameters with
a very high precision. One of the most important parameters among them is the
spectral index nS characterizing the initial perturbations. According to inflationary
paradigm nS should deviate from nS = 1 and be in the range 0.92 < nS < 0.97
depending on the particular scenario of the simple inflation (Mukhanov et al.,
1992; Mukhanov and Chibisov, 1981). It is very important to find these deviations to
confirm or disprove inflationary paradigm. The accuracy of the current observations
is not yet high enough to conclude about these deviations of the spectral index from
the flat one (Bridle et al., 2003). However the future measurements seem to be
able to reach the needed precision.

The CMB spectrum depends on the various cosmological parameters in a
rather complicated way and it is very important to clarify this dependence to be sure
which features of the spectrum are the most sensitive to particular cosmological
parameters. The usual approach using the computer code CMBFAST (Seljak and
Zaldarriaga, 1996) is very helpful, but does not completely solve the problem since
the parameter space has “too many dimensions.” There are various semianalytical
and analytical approaches to this problem (Hu and Dodelson, 2001: Weinberg,
2001, 2002). However I was not able to find in the literature a “final” elementary
analytical formula which would explicitly describe the dependence of the CMB
spectrum on the cosmological parameters and would be in a reasonably good
agreement with the numerics. In this paper I derive such a formula. The main
result of this paper are the expressions (92)–(100).

I start with a pedagogical introduction reminding the derivation of Sachs–
Wolfe effect in conformal Newtonian coordinate system (Mukhanov et al., 1992)
and carry first the calculations assuming the instantaneous recombination. In this
approximation the radiation can be well described in a perfect fluid approximation
before the recombination and as an ensemble of the free photons immediately af-
ter that. This is well justified by causality only when we consider the fluctuations
corresponding to the superhorizon scales. In small angular scales the delayed re-
combination is quite important and leads to an extra damping of the fluctuations.
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Therefore as a next step I show how the formulae obtained in the instantaneous
recombination approximation should be modified to account for this effect. Fi-
nally the spectrum for the small angular scales is derived and the precision of the
determination of cosmological parameters and degeneracy of the spectrum with
respect to a certain combination of these parameters is discussed.

One important simplification I make is that I nearly always consider the most
observationally favored case of a flat universe. The modifications of the most
important features of the CMB spectrum due to the spatial curvature are rather
obvious.

In Appendix A I derive the analytical formulae describing noninstantaneous
recombination which I used in the section on finite thickness effect. In Appendix B
the transfer functions in short and longwave limits are derived in conformal
Newtonian gauge.

2. SACHS–WOLFE EFFECT

Before recombination the radiation is strongly coupled to the matter and in the
scales we are interested in can be well described by a perfect fluid approximation.
When the hydrogen becomes neutral, most of the photons do not interact anymore
with the matter and therefore to describe them we need the kinetic equation.

The free propagating photons are described by the distribution function f
defined via

dN = f (xi , p j , η) d3x d3p, (1)

where dN is the number of particles at time η in the appropriate element of the
phase volume d3xd3 p ≡ dx1dx2dx3dp1dp2dp3, so that f is the particle density
in the one-particle phase space. We assume that the indices α, β . . . run always
over 0, . . . , 3 while i, k take only spatial values 1, 2, 3. The phase volume is
invariant under coordinate transformations and hence the distribution function f
is a space-time scalar. Since the phase volume is conserved along the trajectory, the
distribution function in the absence of the scatterings should obey the collisionless
Boltzmann’s equation

D f (xi (η), pi (η), η)

Dη
≡ ∂ f

∂η
+ dxi

dη

∂ f

∂xi
+ dpi

dη

∂ f

∂pi
= 0, (2)

where dxi/dη and dpi/dη are the appropriate derivatives calculated on photon’s
geodesic.

2.1. Temperature and Its Transformation Properties

The energy (frequency) of the photon with the 4-momentum pα measured
by an observer having the 4-velocity uα is equal to the scalar product of these
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vectors: ω = pαuα . This can be easily understood by going to the local inertial
coordinate frame of the observer. If the spectrum of the quanta coming to an
observer from a certain direction on the sky, characterized by vector ni = −pi/p,
where p = (
p2

i )1/2 is the planckian one then the temperature, defined via

f = f̄
(ω

T

)
≡ 2

exp(ω/T (xα , ni )) − 1
, (3)

generically depends not only on the the direction ni but also on the moment of
time η and the position of the observer xi . The factor 2 here accounts two possible
polarizations of the photons. From now on I consider the Universe where the
fluctuations of the temperature are very small and therefore one can write

T (xα , li ) = T0(η) + δT (xα , ni ), (4)

where δT is much smaller than homogeneous component T0. If the observer is
at rest with respect to a certain coordinate system then taking into account that
gαβuαuβ = g00(u0)2 = 1 we find that the frequency measured by this observer is
equal to ω = p0/

√
g00. If one goes to the other coordinate system x̃α = xα + ξα

infinitesimally different from the old one, then the frequency of the same photon,
measured by a different observer, who is at rest with respect to this new system,
changes. From the transformation properties of the metric and 4-momentum one
gets that

ω ⇒ ω̃ = p̃0/
√

g̃00 = ω(1 + ξ i ′ni ), (5)

where we used the equation pα pα = 0 and kept only the first-order terms in ξ and
metric perturbations. Taking into account that the distribution function is a scalar,
one easily finds that the small temperature fluctuations measured by observer (at
rest) in the new coordinate system are given by

δ̃T = δT − T ′
0ξ

0 + T0ξ
i ′ni . (6)

Hence, we see that only the monopole and dipole components depend on the
particular coordinate system. The monopole component can always be removed
by a redefinition of the background temperature at the particular point and hence
cannot be measured locally. The dipole component depends on the motion of
the observer with respect to the “new ether” defined by the background radiation
and measuring it we can find how the Earth moves relative to CMB. We discuss
the results of these measurements later. Both of these components are not very
interesting regarding the spectrum of the initial fluctuations. The higher multipoles
depend on neither the particular observer nor coordinate system we use to calculate
them. Therefore I perform the calculations in conformal Newtonian coordinate
system where they look especially simple.
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Let us solve the Boltzmann’s equation for the free propagating radiation in a
flat universe with the metric

ds2 = a2{(1 + 2) dη2 − (1 − 2)δik dxi dxk}, (7)

where   1 is the gravitational potential. Using the geodesic equations

dxα

dλ
= pα ,

dpα

dλ
= 1

2

∂gγ δ

∂xα
pγpδ , (8)

where λ is an affine parameter, Boltzmann’s Eq. (2) takes the form

∂ f

∂n
+ ni (1 + 2)

∂ f

∂xi
+ 2p

∂

∂x j

∂ f

∂p j
= 0. (9)

Taking into account that

ω = p0/
√

g00 = (1 + )p/a, (10)

and using the Planck the ansatz (3) and (4) one can easily get that in the lowest
order the Boltzmann’s equation reduces to

(T0a)′ = 0, (11)

while the first order term lead to(
∂

∂η
+ ni ∂

∂xi

) (
δT

T
+ 

)
= 2

∂

∂η
. (12)

In the most interesting case when the universe after recombination is dominated by
dust, a nondecaying mode of the gravitational potential is constant and therefore
the right-hand side of Eq. (12) vanishes. The operator in the left-hand side is just
a total time derivative and therefore(

δT

T
+ 

)
= const, (13)

along a null geodesics. The influence of the gravitational potential on the CMB
fluctuations is known as Sachs–Wolfe effect. In the case when the gravitational
potential after recombination is time dependent, the combination (δT/T + ) is
not constant anymore. As it is clear from (12) its change is given by the integral
from the partial time derivative of the potential along geodesics. This effect is
usually called the integrated Sachs–Wolfe effect. In case the universe is dominated
by quintessence at late stages, the integrated SW effect can be essential, changing
the resulting amplitudes of the fluctuations by 10 ÷ 20%, but only in big angular
scales θ > 1◦. The accounting of this effect is rather obvious and therefore, to
avoid the overcomplication of the final formulae, we consider only the case of the
constant potential.
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As it follows from the geodesics equations, the photons arriving at present
time η0 to observer located at xi

0 from the direction ni propagate along geodesics

xi (η) � xi
0 + ni (η − η0). (14)

Therefore, from (13) we get that δT/T in the direction ni on the sky is equal today
to

δT

T
(η0, xi

0, ni ) = δT

T
(nr , xi (ηr ), ni ) + [

(ηr , xi (ηr )) − 
(
η0, xi

0

)]
, (15)

where ηr is the recombination moment and xi (ηr ) is given by (14). Since we live
in a particular place we are only interested in ni -dependence of the temperature
fluctuations. The last term in (15), contributing only to the monopole component,
which is not measurable locally anyway, can be ignored. As we see the angular
dependence of (δT/T )0 is determined by two factors: (a) by the “initial value” of
(δT/T )r in n-direction in a place from where the photons arrive and (b) by the
value of the gravitational potential  in this place. The appropriate temperature
fluctuations at the moment of recombination (δT/T )r can be easily expressed in
terms of the gravitational potential and the fluctuations of the photon energy density
δγ ≡ δεγ /εγ at this time. With this purpose we use the matching conditions for the
hydrodynamical energy momentum tensor (EMT), which describes the radiation
before decoupling, and the kinetic EMT (see, for instance, Misnes et al., 1997)

T α
β = 1√−g

∫
d3 p f

pα pβ

p0
, (16)

characterizing the gas of the free photons after decoupling. Substituting the ex-
pression for the metric into (16) and using for the distribution function ansatz (3)
we get (up to the linear in perturbations terms):

T 0
0 � 1

a4(1 − 2)

∫
d3 p f̄

(ω

T

)
po � T 4

0

∫ (
1 + 4

δT

T0

)
f̄ (y)y3 dy d2l, (17)

where y ≡ ω/T and we have expressed p0 and p through ω. The integral over y
from the Planckian function f̄ can be explicitly calculated and give the numeri-
cal factor, which, being combined with 4πT 4

0 , is nothing more than just energy
density of the unperturbed radiation. Right before recombination the appropriate
component of hydrodynamical EMT for the radiation is equal to T 0

0 = εγ (1 + δγ ).
This component does not jump at the moment when the universe becomes trans-
parent and hence

δγ = 4
∫

δT

T

d2n

4π
. (18)
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Similarly one can derive from (16) that

T i
0 � 4εγ

∫
δT

T
ni d2n

4π
. (19)

On the other side as it follows from the conservation law for the coupled photon-
baryon plasma (132) (see Appendix B) the divergence of the hydrodynamical
components of T i

0 can be expressed in terms of δγ and ; hence

δ′
γ = −4

∫
ni∇i

(
δT

T

)
d2n

4π
. (20)

where we have assumed that at the recombination the cold matter dominates and
therefore neglected the time derivative of the potential: ′(ηr ) = 0. Going to the
Fourier space we easily infer that(

δT

T

)
k

(ηr ) = 1

4

(
δk + 3i

k2
(kmnm)δ′

k

)
(21)

satisfies both Eqs. (18) and (20). Here and later on we skip the index γ assum-
ing that δ always denotes the fluctuations of the photons energy density. Taking
into account these initial conditions and skipping the monopole term in (15), we
obtain the following expression for the temperature fluctuations in the direction
n ≡ (n1, n2, n3) at location x0 ≡ (x1, x2, x3)

δT

T
(η0, x0, n) =

∫ ((
 + δ

4

)
k

− 3δ′
k

4k2

∂

∂η0

)
ηr

eik·(x0+n(ηr −η0)) d3k

(2π )3/2
, (22)

where k ≡ |k|, k · n ≡ kmnm and k · x0 ≡ kn xn
0 . Since ηr/η0 � 1/30 we can neglect

here ηr compared to η0. It is clear that the first term under the integral represents
the combined result from the initial inhomogeneities in radiation energy density
itself and Sachs–Wolfe effect, while the second term is related to the velocities of
the baryon-radiation plasma at recombination and therefore, often in the literature
it is called a Doppler contribution to the fluctuations.

3. CORRELATION FUNCTION AND MULTIPOLES

In the experiments one usually measures the temperature difference of the
photons received by two antennas separated by a given angle θ and this squared
difference is averaged over the substantial part of the sky. The obtained quantity
can be expressed in terms of the correlation function defined as

C(θ ) =
〈
δT

T0
(n1)

δT

T0
(n2)

〉
, (23)
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where the brackets 〈 〉 denote the averaging over all n1 and n2, satisfying the
condition n1· n2 = cos(θ ). Actually,〈(

δT

T0
(θ )

)2
〉

≡
〈(

T (n1) − T (n2)

T0)

)2
〉

= 2(C(0) − C(θ )). (24)

On the other hand, for a given perturbation spectrum the correlation function
C(θ ) can be easily expressed in terms of the expectation values of the Fourier
components of the quantities characterizing these perturbations at the moment of
recombination.

The Universe is homogeneous and isotropic in big scales and therefore the
averaging over the sky for a particular observer and a spatial averaging over the
positions x0 should give for small angles (or big multipoles) nearly the same
results. At big angles (for low multipoles) the results of the sky averaging for a
single observer are not so significant statistically because of finite statistical sample
(cosmic variance). Therefore, the problem of averaging is finally reduced to the
averaging of the products of Fourier components for the random Gaussian field.
Substituting (22) into (23) and taking into account that, 〈kk′ 〉 = |k|2δ(k + k′),
after integrating over the angular part of k we obtain

C =
∫ (

k + δk

4
+ 3δ′

k

4k2

∂

∂η1

) (
k + δk

4
+ 3δ′

k

4k2

∂

∂η2

)∗

× sin(k|n1η1 − n2η2|)
k|n1η1 + n2η2|

k2dk

2π2
, (25)

where after differentiation with respect to η1 and η2 we have to put η1 = η2 = η0.
Now using the formula (see (10.1.45) in Abranowitz and Stegun, 1964)

sin(k|n1η1 − n2η2|)
k|n1η1 + n2η2| =

∞∑
l=0

(2l + 1) jl(kη1) jl(kη2)Pl(cos θ ), (26)

where Pl(cos θ ) and jl(kη) are, respectively, the Legendre polynomials and spher-
ical Bessel functions of order l, we can rewrite the expression for the correlation
function in the following form

C(θ ) = 1

4π

∞∑
l=2

(2l + 1)Cl Pl(cos θ ), (27)

where the monopole and dipole components (l = 0, 1) were excluded and

Cl = 2

π

∫ ∣∣∣∣(k(ηr ) + δk(ηr )

4

)
jl(kη0) − 3δ′

k(ηr )

4k

d jl(kη0)

d(kη0)

∣∣∣∣2

k2 dk. (28)

These coefficients Cl are directly related to the coefficients alm in the expansion
of δ�/� in terms of spherical harmonics, namely Cl = 〈|alm |2〉, and therefore
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they characterize the contribution of the multipole component l in the correlation
function. If θ  1, the main contribution to C(θ ) give the multipoles with l ∼ 1/θ .

In reality the antennas have a finite resolution and a specific angular response
function. Hence, if we want to compare the result of our calculations directly to
the observations, we have to insert in the expression (27) the appropriate window-
function, characterizing the resolution of antenna. Usually this leads to a “cutoff”
of the higher order multipoles in the sum (27).

The resulting spectrum of CMB fluctuations depends on the various cosmo-
logical parameters. First of all, these are the amplitude and the index of the primor-
dial spectrum of inhomogeneities, generated by inflation. The rather generic predic-
tion of inflation is that in the interesting for us scales:2 |2

kk3| = Bkn−1, with
1 − n ∼ 0.03 ÷ 0.08 (Mukhanov et al., 1992; Mukhanov and Chibisov, 1981).
The amplitude B is not predicted and should be normalized to fit the observations.
The other parameters on which the shape of the CMB-spectrum depends are the
baryon density, characterized by �b, the contribution of the clustered cold mat-
ter to the total energy density �m(�m = �b + �cdm), the Hubble constant h75 (I
normalize it on 75 km/s · Mpc) and the cosmological constant (quintessence) char-
acterized by ��. The present data are best fitted assuming that the universe is flat
with �tot = �m + �� � 1 and the total energy density is dominated by the dark
cold matter and quintessence with only few percents of the baryons. Below we
concentrate mostly on the models, which deviate from the “concordance model”
not too much. Our purpose is to figure out how the variation of the parameters
influences the observed CMB spectrum and to get an idea up to what extent the
CMB determination of the cosmological parameters is robust. We consider the
different angular scales separately.

4. ANISOTROPIES IN BIG ANGULAR SCALES

The formula (28) was derived in the approximation of the instantaneous re-
combination. Because of causality this approximation is fairly good when we con-
sider the big angular scales, where the CMB fluctuations are mainly determined by
inhomogeneities exceeding the horizon scale at the recombination time. Moreover,
the perturbations spectrum in those scales is not much influenced by the evolution.
Hence the CMB fluctuations in big angular scales deliver us the undisturbed infor-
mation about the primordial inhomogeneities. They are mainly determined by the
amplitude of the primordial spectrum B and by the spectral index n and practically
independent on the other cosmological parameters. The horizon at recombination
is about the Hubble scale H−1

r = 1.5tr , which in flat universe has the angular size

2 Most of the calculations will be done here for a flat spectum (n = 1). The consideration can be easily
generalized for an arbitrary spectral index n and in the case of small deviations from the flat spectrum
the modification of the final results is obvious (it will be briefly discussed later).
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0.87◦ on today’s sky. Therefore, the fluctuations which we will consider in this
section refer to the angles θ � 1◦ or, to the multipoles l  1/θH ∼ 200.

For the superhorizon adiabatic perturbations with kηr  1 we have (see
Appendix B):

δk(ηr ) � −8

3
k , δ′

k(ηr ) � 0. (29)

As it follows from (22) their contribution to the temperature fluctuations is equal
to

δT

T
(η0, x0, n) � 1

3
(ηr , x0 − nη0), (30)

that is the observed fluctuations constitute one third of the gravitational potential in
the place from where the photons arrived.3 Taking into account that after equality
the potential in supercurvature scales drops compared to its initial value 0

k by
factor 9/10 (Mukhnov et al., 1992) substituting (29) into (28) and calculating the
integral with the help of the standard formula∫ ∞

0
sm−1 j2

l (s) = 2m−3π
�(2 − m)�(l + m

2 )

�2( 3−m
2 )�(l + 2 − m

2 )
, (31)

we obtain for the flat initial spectrum (|0
k)2k3| = B) well-known result:

(l(l + 1)Cl)l<30 = 9B

100π
= const. (32)

Deriving this formula, I used in the integrand the flat spectrum everywhere, as-
suming that the main contribution for small l comes from the scales exceeding the
horizon, where the primordial spectrum is not modified too much by the transfer
functions. This is a rather good approximation for l up to 20 ÷ 30. Nonetheless,
when we are interested in the precise normalization, we need to take into account
the corrections coming from the modified spectrum of the perturbations at big k.
This can be well traced only in numerical calculations.

Unfortunately, the accuracy of the direct information about the statistical prop-
erties of the primordial perturbations spectrum gained from the measurements at
big angular scales is restricted by the cosmic variance. In fact, within cosmic hori-
zon there are only 2l + 1 samples of the statistical realization for every particular
multipole component l. This leads to the inevitable typical “statistical fluctuations”
in Cl

�Cl

Cl
� (2l + 1)−1/2. (33)

3 Here we neglect the possible effect of the quintessence component which could influence the grav-
itational potential making it time dependent in the close-to-us epoch. In turn it would lead to the
contribution from the integrated Sachs–Wolfe effect.
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Hence, the statistical properties of the spectrum in the scales corresponding to the
multipole l can be determined in observation only up to an inevitable error given
by (33). For the quadrupole (l = 2) this “typical error” is about 50% and therefore
it cannot be used for the normalization of the spectrum. For l ∼ 20 the error
constitutes 15%. Therefore, if we want to get a good accuracy in determining the
spectrum of primordial inhomogeneities, we are forced to go to smaller angular
scales, where this spectrum if distorted by the evolution. On the one hand it is
bad news, since we lose there the “pristine inormation.” However, on the other
hand, the distortions of the spectrum depend on the other cosmological parameters
involving them “directly in the game” and, therefore, allowing us to determine
these parameters under condition of having precise enough measurements.

On small angular scales we cannot ignore anymore the effect of the delayed
recombination and the obtained above formulae should be corrected. Therefore
before we proceed with the calculations of the fluctuations in small scales, we
derive how the basic formulae should be modified to account for the effect of the
delayed recombination.

5. DELAYED RECOMBINATION AND FINITE THICKNESS EFFECT

The delayed (noninstantaneous) recombination is important because of two
reasons. First of all, the finite duration of recombination makes the moment when
a specific photon decouples to be not very certain. As a result the information
about the place from where this photon arrived is “smeared out.” This leads to
a suppression of the CMB fluctuations in small angular scales, known as finite
thickness effect. The delayed recombination leads also to an extra dissipation of
the inhomogeneities increasing the Silk damping scale and hence changing the
conditions in the places where the photons decouple. First we consider the finite
thickness effect.

Let us consider a particular photon arriving to us from the direction n. With
nonnegligible probability this photon could decouple at any value of the redshift in
the interval, 1200 > z > 900, and propagate without further scatterings afterwards.
If this happens at the moment ηL , then the photon arrives to us from the place
x(ηL ) = x0 + n (ηL − η0) without further scatterings and brings the information
about conditions in this particular place. Since we do not know exactly when and
where the particular photon decouples, a set of the photons arriving from a definite
direction brings us only “smeared” information about the conditions within the
layer of width �x ∼ �ηL , where �ηL is about duration of recombination. It is
clear that if the perturbation has a scale smaller than �ηL then as a result of
this smearing the information about the structure of this perturbation will be lost
and we expect that the contribution of these scales to the temperature fluctuations
will be strongly suppressed. Let us calculate the probability that the photon was
scattered last time within the time interval �tL at the moment of physical time
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tL (corresponding to the conformal time nL ) and then avoided further scatterings
until present time t0. With this purpose we divide the time interval t0 > t > tL

into N small pieces of the duration �t so that t j = tL + j�t and N > j > 1. It
is obvious that the required probability is

�P = �tL

τ (tL )

(
1 − �t

τ (t1)

)
· · ·

(
1 − �t

τ (t j )

)
· · ·

(
1 − �t

τ (tN )

)
, (34)

where τ (t j ) = (σT nt (t j )X (t j ))−1 is the mean free time due to the Thompson scat-
tering at t j and nt , X are respectively the total number density of all (bounded and
free) electrons and the degree of the ionization. Taking the limit N → ∞(�t → 0)
and going back from the physical time t to conformal time η we obtain

d P(ηL ) = µ′(ηL ), exp (−µ(ηL )), dηL , (35)

where prime, as usually, denotes the derivative with respect to the conformal time
and the optical depth

µ(ηL ) ≡
∫ t0

tL

dt

τ (t)
=

∫ η0

nL

σT nt Xea(η) dη, (36)

was introduced. Now, taking into account, that in the formula (22) the recombina-
tion moment ηr should be replaced by ηL weighted with the probability (35), we
conclude that this formula should be modified as

δT

T
=

∫ {
 + δ

4
− 3δ′

4k2

∂

∂η0

}
ηL

eik·(x0+n(ηL−η0))µ′ exp (−µ) dηL
d3k

(2π )3/2
. (37)

We would like to stress that in distinction from (22) here one cannot neglect ηL

compared to η0 anymore since when we integrate over ηL the appropriate argument
of the exponent changes very much for k > η−1

L .
It is easy to see that the visibility function µ′ exp (−µ) vanishes at very

small ηL (because µ � 1) and at big ηL (µ′ → 0) and reaches the maximum at ηr

determined by the condition

µ′′ = µ′2. (38)

Since in the case of noninstantaneous recombination the moment when it exactly
happens become smeared over rather substantial time interval we reserve from
now on the notation ηr for the time when the visibility function takes its maximum
value. This maximum is located within the thin layer 1200 > z > 900. During this
short-time interval the scale factor and the total number density ηt do not change
very substantially and therefore we neglect their time dependence, estimating their
values at η = ηr . Opposite to this the ionization degree X changes by few orders
of magnitude. Taking this into account, we can rewrite the condition (38) as

X ′
r � −(σT nt a)r X2

r , (39)
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where index r means that the appropriate quantities are estimated at ηr . At 1200 >
z > 900 the ionization degree X is well described by the formula (115) in
Appendix A. The change of X is mainly due to the exponential factor there;
hence

X ′ � −1.44 × 104

z
HX, (40)

where H ≡ (a′/a). Substituting this relation in (39), we get

Xr � Hrκ(σT nt a)−1
r , (41)

where κ ≡ 14400/zr . Together with (115) this equation determines when the vis-
ibility function takes the maximum value. It is easy to see that this happens in the
middle of the recombination layer at zr � 1050 irrespective of the values of the
cosmological parameters. At this time the ionization degree Xr is still in κ � 13.7
times bigger than the ionization degree at the decoupling determined by the con-
dition t ∼ τγ (see (119)). Near its maximum the visibility function can be well
approximated by the Gaussian one:

µ′ exp (−µ) ∝ exp

(
−1

2
(µ − 1nµ′)′r (ηL − ηr )2

)
. (42)

Calculating the derivatives here with the help of (40) and (41), we obtain

µ′ exp (−µ) � (κHη)r√
2πηr

exp

(
−1

2
(κHη)2

r

(
ηL

ηr
− 1

)2
)

, (43)

where the preexponential factor was taken to satisfy the normalization condition∫
µ′ exp (−µ)dηL = 1.

We can use this formula to perform the explicit integration over ηL in (37).
The gravitational potential and the slowly varying contribution to δγ practically
do not change during the recombination. Therefore, they can be approximated by
their values at ηr . The only term inside the curly brackets in (37) which could
incur a very substantial change is the Silk damping scale. Keeping in mind that
the main contribution to the integral comes from the region near ηr , we estimate
this scale also at ηr . Of course this is a rather rough estimate which nevertheless
reproduces the results of the numerics with rather good accuracy. Thus, ignoring
ηL -dependence of the expression in curly brackets in (37) and taking its value at
ηr , after substitution (43) in (37) and integration over ηL , we obtain

δT

T
=

∫ (
 + δ

4
− 3δ′

4k2

∂

∂η0

)
ηr

exp (−(σκηr )2)eik·(x0+n(ηr−η0)) d3k

(2π )3/2
, (44)

where

σ ≡ 1√
6(κHη)r

. (45)
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When deriving (44), we replaced (k · n)2 by k2/3, keeping in mind the isotropy of
perturbations. Note that now we can neglect in the exponent ηr compared to η0.
To find out how σ depends on the cosmological parameters, we have to calculate
(Hη)r . At recombination and before the cosmological term can be completely
ignored and the behavior of the scale factor is well described by the solution (see,
for instance, Mukhanov et al., 1992,

a(η) = am

((
η

η∗

)2

+ 2

(
η

η∗

))
, (46)

where η∗ = (πGεeqa2
eq/3)−1/2. Note, that η∗ is a bit different from the moment of

time ηeq when the energy densities of radiation and matter are exactly equal. The
relation between them, ηeq = (

√
2 − 1) η∗, follows from the condition a (ηeq) =

am . Hence

(Hη)r = 2
1 + (ηr/η∗)

2 + (ηr/η∗)
, (47)

where (ηr/η∗) can be expressed through the ratio of the redshifts at equality and
recombination if one uses the obvious relation(

ηr

η∗

)2

+ 2

(
ηr

η∗

)
� zeq

zr
. (48)

Substituting (47) in (45) and taking into account that κ � 13.7, we obtain

σ � 1.49 × 10−2

(
1 +

(
1 + zeq

zr

)−1/2
)

. (49)

The the exact value of zeq depends on the cold matter contribution to the total
energy density and from the number of the ultrarelativistic species present in the
early universe. Assuming three types of neutrino zr/zeq can be estimated as

zeq

zr
� 12.8(�mh2

75). (50)

The value of σ depends on the amount of the cold matter not very sensitively; if
�mh2

75 � 0.3 then σ � 2.2 × 10−2, while for �mh2
75 � 1, σ � 1.9 × 10−2.

Now let us find how the noninstantaneous recombination influences the Silk
dissipation scale. As we mentioned above, at η = ηr the ionization degree is
κ ∼ 13.7 times bigger than at the decoupling and the mean free path is corre-
spondingly smaller than the horizon scale. Therefore one can try to use the result
(141) of Appendix B, obtained in imperfect fluid approximation, to estimate the
corrections to the formula (142) due to the noninstantaneous recombination. Us-
ing the approximate formula (115) which is valid when the ionization drops below
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unity we obtain

(kDη)−2
r � 0.36 (�mh2

75)1/2(�bh2
75)−1z−3/2

r + 12

5
c2

Sσ
2. (51)

The first term here is the same as dissipation scale (142) derived for the case of
instantaneous recombination. It accounts the dissipation until the moment when
recombination starts. The second term is due to an extra dissipation which happens
in the process of recombination.

Note that the second term in (51) corresponds to the scale which at ηr smaller
that the mean free path τγ and barely can be trusted literally. However, within
the time interval �η ∼ ηrσ when the visibility function is different from zero the
free propagating photons have enough time only to go at the (comoving) distance
λ ∼ ηrσ which roughly corresponds to the second term in (51). Hence, although
the imperfect fluid interpretation of the second term become questionable, it can
be nevertheless used to make an estimate of the damping scale. For the realistic
values of the dark matter and baryon densities, �mh2

75 � 0.3 and η10 � 5, this
term is nearly twice bigger than the first term; hence an extra Silk dissipation
due to delayed recombination is rather important. At very low baryon density the
first term in (51) dominates and most of the dissipation happens before ionization
significantly drops.

Thus, we found that the delayed recombination can be taken into account in
a simple way. First, there occurs an extra dissipation of the perturbations and the
dissipation scale can increase in few times compared to the case of instantaneous
recombination. Second, it leads to an uncertainty when the photons decouple from
the matter and as a result to an extra suppression of the CMB fluctuations in small
angular scales. Although both effects are interconnected, they have different nature
and should not be confused.

The formulae derived in the approximation of instantaneous recombination
are modified in an obvious way. Namely, the formula (22) should be replaced by
(44). Repeating the steps which lead to a key formula (28), we conclude that the
expression under the integral there should be just multiplied by a general factor
exp(−2(σkηr )2).

6. SMALL ANGULAR SCALES

For big l, corresponding to small angular scales, the main contribution to
Cl comes from those perturbations which being placed at recombination have an
angular size θ ∼ 1/ l on today’s sky. The multipole moment l ∼ 200 corresponds to
the sound horizon scale at recombination. Hence the perturbations responsible for
the fluctuations with l > 100 ÷ 200 should have the wave numbers k > η−1

r , that
is, they entered horizon before recombination. Such perturbations evolve in a rather
complicated way. Their primordial spectrum is strongly modified as a result of the
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evolution. In realistic models, the transfer functions relating the initial spectrum of
gravitational potential 0

k with resulting spectra for  and δγ at recombination can
be analytically derived only in two limiting cases: (a) for the perturbations which
entered the horizon well before equality and (b) much later after equality (when
the gravitational field of radiation can be ignored). In the limit of very big k the
result is given by the formulae (152) and (153), while for very small k by (143) (see
Appendix B). Unfortunately, for the realistic values of the cosmological parameters
none of these results can be directly used to calculate the CMB fluctuations in the
most interesting region of first few Doppler peaks. Actually the derived shortwave
asymptotic is applicable only for those perturbations which have chance for at
least one oscillation before equality (kηeq > 2

√
3π ∼ 10). At the same time the

longwave asymptotic (143) can be literally applied only to the perturbations which
entered the horizon when the radiation was already negligible compared to the
matter. If �mh2

75 � 0.3 then as it follows from (50) zr/zeq � 4, and the radiation
still constitutes about 20% of the energy density at the recombination time. Hence,
the formula (143) is not trustable for those perturbations which enter the horizon
in between equality and recombination and responsible for the fluctuations in the
region of first few acoustic peaks.

6.1. Transfer Functions

To describe the perturbations in these intermediate region as well as outside
it, we have to modify the derived formulae. Taking into account the time behavior
of the asymptotic WKB solutions of Appendix B, we conclude that at the moment
of recombination:

k + δk

4
�

[
Tp

(
1 − 1

3c2
S

)
+ To

√
cS cos

(
k

∫ ηr

0
cS dη

)
e−(k/kD)2

]
0

k (52)

and respectively

δ′
k � −4Tokc3/2

S sin

(
k

∫ ηr

0
cS dη

)
e−(k/kD)2

0
k , (53)

where the transfer functions Tp and To should depend on the wave number k as well
as on the equality time ηeq and the baryon density. To simplify the consideration,
we will restrict ourselves by the case when the baryon density is small compared to
the total density of the cold matter, that is, �b  �m . This will allow us to neglect
the baryon contribution to the gravitational potential compared to the contribution
from the cold dark matter, which interacts with the radiation only gravitationally.
However even in this case the baryons can change the speed of sound very essen-
tially and we have to take this into account. This is the situation for the concordance
model and one can use analytical results, which I will derived below, only to study
the dependence of the fluctuations on the values of main cosmological parameters
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within some “window” around this model. When the contribution of the baryons
to the gravitational potential is negligible, the transfer functions Tp and To depend
only on k and ηeq, which on dimensional grounds can enter Tp and To only in
combination kηeq. Their asymptotics can be easily inferred from (143) and (153).
For the longwave perturbations with kηeq  1,

Tp → 9

10
; To → 9

10
· 3−3/4 � 0.4, (54)

while in the shortwave limit for kηeq � 1

Tp → ln(0.15kηeq)

(0.27kηeq)2
→ 0; To → 35/4

2
� 1.97, (55)

where the factor 10/9 accounts for the change of the gravitational potential for
superhorizon perturbations after matter–radiation equality. Unfortunately, in the
most interesting for us intermediate range of scales 1 < kηeq < 110 which, as
we will see, is responsible for the fluctuations in the region of first few acoustic
peaks, the transfer functions can be calculated only numerically. In the interval
1 < kηeq < 10, one can approximate Tp with a good accuracy by (Bardeen et al.,
1986)

Tp � 0.25 ln

(
14

kηeq

)
, (56)

and, respectively,4

To � 0.36 ln (5.6kηeq). (57)

The transfer functions are monotonic; as kηeq increases the function Tp decreases
and approaches zero, while To increases and reaches its asymptotic value To �
1.97. For perturbations which enter horizon well before equality, the function To

is in about five times bigger than for the perturbations which crossed the horizon
long time after equality. The physical origin of this difference is rather transpar-
ent. Before equality the gravitational field of the radiation cannot be neglected.
Therefore when perturbation enters horizon, the gravity field of the radiation extra
boosts the generated sound wave and its amplitude will be five times bigger than
the amplitude in the case when this field can be neglected.

6.2. Calculating the Spectrum

To calculate Cl , we should substitute (52) and (53) into formula (28), which
should be appropriately corrected for the finite thickness effect. However, the
obtained integrals are not very transparent and before we proceed it makes sense to

4 I thank A. Makarov for numerical calculations of To function in the limit of vanishing baryon density.
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simplify them further using the advantage of considering l � 1. With this purpose
we first get rid of the derivatives of the spherical Bessel function in (28). Using
the Bessel function equation, one can easily verify that

j ′2
l (z) =

[
1 − l(l + 1)

z2

]
j2
l (z) + (z j2

l (z))′′

2z
, (58)

where prime denotes the derivative with respect to the argument. Substituting this
into (28) and integrating by parts, we get the result which agrees with (Weinberg,
2001, 2002).

Cl = 2

π

∫ (∣∣∣∣ + δ

4

∣∣∣∣2

k2 + 9|δ′|2
16

(
1 − l(l + 1)

(kη0)2

))

× (1 + O) e−2(σkηr )2
j2
l (kη0) dk, (59)

where by O we denoted the corrections of the order of ηr/η0 and (kη0)−1, which
were estimated taking into account the general structure of the expressions in
(52) and (53). The corrections ηr/η0 can be neglected compared to unity since
ηr/η0 � z−1/2

r ∼ 1/30. At big l only those k give a substantial contribution to
the integral for which kη0 ≥ l. Actually, as l → ∞ we can use the following
approximation for the Bessel functions

jl(z) →
{

0, z < ν,

z−1/2(z2 − ν2)−1/4 cos(
√

z2 − ν2 − ν arccos (ν/z) − π/4), z > ν,

(60)

where ν/z �= 1 is held fixed and ν ≡ l + 1/2; hence the correction 1/kη0 ∼
1/ l  1 can also be skipped.

Now we will use (60) in the integrand of (59). Keeping in mind that the
argument of j2

l (kη0) changes with k much faster than the argument of the oscillating
part of the WKB solutions for δk we replace the cosine squared, coming from (60),
by its average value 1/2. The result reads

Cl � 1

16π

∫ ∞

lη−1
0

(
|4 + δ|2k2

(kηo)
√

(kη0)2 − l2
+ 9

√
(kη0)2 − l2

(kη0)3
δ′2

k

)
e−2(σkηr )2

dk, (61)

where using the advantage of considering only big multipoles we replaced l + 1
with l. This result was first derived in Weinberg (2001, 2002).

Let us consider the flat initial perturbation spectrum: |(0
k)2k3| = B. Substi-

tuting (52) and (53) into (61), and changing the integration variable to x ≡ kη0/ l
after elementary calculations, we arrive to the following result:

l2Cl � B

π
(O + N ), (62)
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where keeping in mind l-dependence of l2Cl we write it as a sum of different terms.
Namely,

O ≡ O1 + O2 (63)

is the oscillating contribution to the spectrum given by two terms with twice
different periods:

O1 = 2
√

cS

(
1 − 1

3C2
S

) ∫ ∞

1

TpTo e(− 1
2 (l−2

f +l−2
S )2l2x2) cos(l�x)

x2
√

x2 − 1
dx , (64)

and

O2 = cS

2

∫ ∞

1
T 2

o

(1 − 9c2
S)x2 + 9c2

S

x4
√

x2 − 1
e−(l/ lS )2x2

cos(2l� x) dx . (65)

These terms modulate the spectrum, leading to the peaks and valleys. We have
introduced here the ratio

� ≡ 1

η0

∫ ηr

0
cS(η) dη, (66)

which determines the period of oscillations and location of the peaks. The scales lf

and lS characterizing the damping of the fluctuations because of the Silk dissipation
and finite thickness effect are equal to

l−2
f ≡ 2σ 2

(
ηr

η0

)2

; l−2
S ≡ 2(σ 2 + (kDηr )−2)

(
ηr

η0

)2

, (67)

where σ is given in (49). The analytical estimate for the Silk scale kDηr is not very
accurate; however, one still can use the estimate (51) for kDηr .

In turn, the nonoscillating contribution Ic can be written down as a sum of
three integrals

N = N1 + N2 + N3, (68)

where

N1 =
(

1 − 1

3c2
S

)2 ∫ ∞

1

T 2
p e−(l/ lf)2x2

x2
√

x2 − 1
dx (69)

is proportional to the baryon density and vanishes in the absence of baryons when
c2

S = 1/3. The other two integrals are

N2 = cS

2

∫ ∞

1

T 2
o e−(l/ lS )2x2

x2
√

x2 − 1
dx (70)

and

N3 = 9c3
S

2

∫ ∞

1
T 2

o

√
x2 − 1

x4
e−(l/ lS )2x2

dx . (71)
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Before we proceed further, let us express the parameters entering (62), namely,
cS , lfl S, �, and transfer functions To, Tp through the basic cosmological parame-
ters �b, �m , h75, and �� = 1 − �m .

6.3. Parameters

The speed of sound cS at recombination depends only on the baryon density,
which defines how it deviates from the speed of sound in purely ultrarelativistic
medium. To characterize these deviations, it is convenient to use instead of the
baryon density the parameter ξ defined as

ξ ≡ 1

3c2
S

− 1 = 3

4

(
εb

εγ

)
r

� 17(�bh2
75), (72)

Then c2
S can be expressed through ξ as

c2
S = 1

3(1 + ξ )
.

For the realistic value of the baryon density �bh2
75 � 0.035 one gets ξ � 0.6.

The damping scales lf, lS are given by (67). It is clear that to express them
through the cosmological parameters we first have to calculate the ratio ηr/η0,
which also depends on the cosmological term. To calculate it, let us consider the
auxiliary moment of time η0 > ηx > ηr , when the radiation is already negligible
and the cosmological term is still not relevant for the dynamics. To determine
ηx/η0, we can use the exact solution describing a flat universe filled by the dust
and cosmological constant:

a(t) = a0

(
sinh

3

2
H0t

)2/3

. (73)

As a result we obtain

ηx/η0 � I�z−1/2
x = 3

(
��

�m

)1/6 (∫ y

0

dx

(sinh x)2/3

)−1

z−1/2
x , (74)

with the upper limit of integration y ≡ sinh−1(��/�m)1/2. Taking into account
�� = 1 − �m , one can use the following numerical fit for I� given by (74):

I� � �−0.09
m , (75)

which approximates the exact result (74) with the accuracy better than 1% every-
where within the interval 0.1 < �m < 1.

The ratio ηx/ηr can be calculated with the help of (46) and is equal to

ηr

ηx
�

(
zx

zr

)1/2 (
1 + 2

η∗
ηr

)−1/2

=
(

zx

zeq

)1/2
((

1 + zeq

zr

)1/2

− 1

)
, (76)
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where we used (48) to express η∗/ηr in terms of zeq/zr . Combining this formula
with (74), we obtain

ηr

η0
= 1√

zr

((
1 + zr

zeq

)1/2

−
(

zr

zeq

)1/2
)

I�. (77)

Substituting this together with the expression (49) for σ into (67), one gets

lf � 1530

(
1 + zr

zeq

)1/2

I −1
� , (78)

where we remind that the ratio of the redshifts at recombination and equality for
three neutrino types (see (50)) is equal to

zr

zeq
� 7.8 × 10−2

(
�mh2

75

)−1
. (79)

The scale lf characterizes the damping of CMB fluctuations because of finite
thickness effect. It depends on both cosmological term and �mh2

75 not very sensi-
tively; for instance if �mh2

75 � 0.3 and ��h2
75 � 0.7, we have lf � 1580, while for

�mh2
75 � 1 and ��h2

75 � 0, one gets lf � 1600. The scale lS describing the com-
bined effect from the finite thickness and Silk damping can be calculated similarly.

Using the estimate (51) for Silk dissipation scale, one can easily find that

lS � 0.7lf

(
1 + 0.56ξ

1 + ξ
+ 0.8

ξ (1 + ξ )

(�mh2
75)1/2

(1 + (1 + zeq/zr )−1/2)2

)−1/2

. (80)

This formula is not as reliable as the estimate for lf since first we neglected the
contribution of the heat conductivity to Silk dissipation scale and second we cal-
culated it using imperfect fluid approximation which surely breaks down when the
visibility function reaches its maximum. Nevertheless it is still trustable within
10% accuracy and an exact result is a bit smaller than given by (80). In distinction
from lf the damping scale lS depends not only on the matter density and cosmo-
logical term but also on the baryon density, characterized by ξ . However, this
dependence is very strong only for ξ  1 when the second term inside the bracket
in (80) dominates. For ξ = 0.6 we get lS � 1100 if �mh2

75 � 0.3 and lS � 980
for �mh2

75 � 1. The dissipation scale in the universe with more cold matter is big-
ger (correspondingly lS is smaller) because recombination there happens at later
cosmic time tr and therefore the perturbations get an extra time to be washed out.

The parameter ρ which, as we will see, defines the location of the peaks in
the spectrum, can be easily calculated if one substitutes the speed of sound

cS(η) = 1√
3

(
1 + ξ

(
a(η)

a(ηr )

))−1/2

, (81)

where a(η) is given by (46) into (66) and performs an explicit integration there.
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The result is

� � I�√
3zrξ

ln

(√
(1 + zr/zeq)ξ + √

(1 + ξ )

1 + √
ξ (zr/zeq)

)
. (82)

It is clear that � depends on both baryon and matter densities. However, it is not
very transparent how � behaves when we change these parameters. Therefore it
is worthwhile to find a simple analytical fit for (82), which would reproduce the
parameter dependence of � within reasonable range of change of ξ and �mh2

75.
The appropriate numerical fit is5 .

� � 0.014(1 + 0.13ξ )−1
(
�mh2

75

)1/4
I� (83)

reproduces the exact result (82) with the accuracy about 5 ÷ 7% or better ev-
erywhere in the region 0 < ξ < 5, 0.1 < �mh75 < 1, where the function � itself
changes in about three times. Combining this with the numerical fit for I� in (75),
we have

� � 0.014(1 + 0.13ξ )−1
(
�mh3.1

75

)0.16
. (84)

The transfer functions Tp, To depend only on kηeq. Rewritten in terms of the
variable x = kη0/ l

kηeq = ηeq

η0
lx � 0.72 (�mh2

75)−1/2 I�l200x , (85)

where l200 ≡ l/200. As we will see the contributions to the integrals defining the
fluctuations comes from O(1) > x ≥ 1. Therefore for 200 < l < 1000 the transfer
functions in the relevant range of kηeq can be approximated by (56) and (57); hence

Tp(x) = 0.74 − 0.25(P + ln x), (86)

where

P(l, �m , h75) ≡ ln

 I�l200√
�mh2

75

 , (87)

and, respectively,

T0(x) = 0.5 + 0.36(P + ln x). (88)

6.4. Calculating the Spectrum (Continuation)

Now we will proceed with the calculations of the fluctuations. The main
contribution to the integrals from the oscillating functions (64) and (65) gives the

5 I am very grateful to P. Steinhardt for helping me to check numerically the accuracy of this fit and
the fits (97)–(99).
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vicinity of the singular point x = 1. These integrals have a form∫ ∞

1

f (x) cos (ax)√
x − 1

dx (89)

and after making substitution x = y2 + 1 can be calculated using stationary (sad-
dle) point method. The result is∫ ∞

1

f (x) cos (ax)√
x − 1

dx ≈ f (1)

(1 + B2)1/4

√
π

a
cos

(
a + π

4
+ 1

2
arcsin

B√
1 + B2

)
,

(90)

where B ≡ (d ln f/adx)x=1. For big a we can put B ≈ 0 and the above formula
simplifies to ∫ ∞

1

f (x) cos(ax)√
x − 1

dx ≈ f (1)

√
π

a
cos

(
a + π

4

)
. (91)

Using (91) to calculate the integrals in (64) and (65), we easily get

O �
√

π

�l
(A1 cos(l� + π/4) + A2 cos (2l� + π/4)) e−(l/ lS )2

, (92)

where the coefficients

A1 ≡ −
(

4

3(1 + ξ )

)1/4

ξ (TpTo)x=1 e( 1
2 (l−2

S −l−2
f )l2) and A2 ≡ (T 2

o )x=1

4
√

3(1 + ξ )
(93)

are the slowly varying functions of l. They also depend on the basic cosmological
parameters and as we will see the spectrum of the fluctuations at l > 200 is rather
sensitive to the variation of these parameters. We would like to mention that when
one uses this method to calculate the integrals the contribution of the Doppler
term to the oscillating part of the spectrum drops out. One can check that actually
this contribution at l > 200 do not exceed few percents of the total amplitude. If
�b  �m the transfer functions for the most interesting range 200 < l < 1000
can be approximated by (86) and (88). In this case we have

A1 � 0.1
((P − 0.78)2 − 4.3)ξ

(1 + ξ )1/4
e( 1

2 (l−2
S −l−2

f )l2), A2 � 0.14
(0.5 + 0.36P)2

(1 + ξ )1/2
, (94)

where P is given by (87).
Substituting (86) in the expression (69) for nonoscillating contribution N1,

we get

N1 � ξ 2[(0.74 − 0.25P)2 I0 − (0.37 − 125P)I1 + (0.25)2 I2], (95)
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where the integrals

Im(l/ lf) ≡
∫ ∞

1

(ln x)m

x2
√

x2 − 1
e−(l/ lf)2x2

dx (96)

can be calculated in terms of the hypergeometric functions. However the obtained
expressions are not very transparent and therefore it makes sense to find a numerical
fit for them. The final result is

N1 � 0.063ξ 2 (P − 0.22(l/ lf)0.3 − 2.6)2

1 + 0.65(l/ l f )1.4
e−(l/ l f )2

. (97)

Similarly we obtain

N2 � 0.037

(1 + ξ )1/2

(P − 0.22(l/ lS)0.3 + 1.7)2

1 + 0.65(l/ lS)1.4
e−(l/ lS )2

. (98)

The Doppler contribution to nonoscillating part of the spectrum is comparable to
N2 and is equal to

N3 � 0.033

(1 + ξ )3/2

(P − 0.5(l/ lS)0.55 + 2.2)2

1 + 2(l/ lS)2
e−(l/ lS )2

. (99)

The numerical fits (97)–(99) reproduce the exact result in the most interesting
range of multipoles with a few percent accuracy for a wide range of cosmological
parameters. The extra dependence from l/ lS and l/ lf is due to the fact that the
exponent in the integrals from nonoscillating functions cannot be just simply es-
timated at x = 1. When the expression under the integral is monotonic function,
the substantial contribution to it comes not only from the vicinity of x = 1 but also
from x ∼ O(1). The nonoscillating contribution of the Doppler term given by N3

is rather essential and cannot be ignored.
It is convenient to normalize l(l + 1) Cl for big l on the amplitude big angular

scales (small l) given by (32), so that finally we obtain

l(l + 1)Cl

(l(l + 1)Cl)i<30
= 100

9
(O + N1 + N2 + N3), (100)

where O , N1, N2, N3 are respectively given by (92), (97), (98) and (99). In the case
of the concordance model (�m = 0.3, �� = 0.7, �b = 0.04, and H = 70 km/
sec · Mpc) the result is presented in Fig. 1, where I have separately shown by the
dashed and thin solid lines, respectively, the overall nonoscillating and oscillating
contributions. The total resulting fluctuations are shown by the thick solid line.

6.4.1. About Accuracy

Keeping in mind the approximations, which have been made in deriving the
analytical formula (100), it occurred that for the concordance model Eq. (100) is
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Fig. 1.

in surprisingly good agreement with the numerical calculations using CMBFAST
code. Comparing (100) to CMBFAST runs,6 one can easily check that the analytical
approximation works rather well reproducing the numerical results with good
accuracy in a rather wide range of the cosmological parameters around concordance
model. Namely, for �m = 0.3 the agreement is still very good up to �b � 0.08,
when the baryons constitute already about 30% of the total cold matter density.
At higher �b the contribution of the baryons to the gravitational potential which
we neglected becomes very essential and one cannot use anymore the analytical
formula (100). This formula was derived under assumption �b  �m and is not
trustable when the baryons constitute a very substantial fraction of the total amount
of cold matter. It is also worth to note that at high �mh2

75 the expected accuracy
in the region of the first peak is not as good as in the region of the second and
third peaks. This is because the approximation for the transfer functions which
was used becomes not so accurate on the border of the interval corresponding
to 1 < kηeq < 10. In particular, if �mh2

75 = 1 the main contribution to the first
acoustic peak located at l < 200 gives the perturbations with the wave numbers
kηeq ∼ 0.7 (see (85), where the approximations (56) and (57) are not very accurate.
Hence, although for the model with �mh2

75 = 1 and �b = 0.04 the analytical
result is still in a fair agreement with the numerics, its accuracy in the region of
the first peak is not as good as for concordance model. Also note that the peaks
given by (100) are shifted by about 10% compared to the numerical results. One
of the reasons for that is that with the purpose to simplify the final expression

6 I am very grateful to P. Steinhardt, S. Bashinsky, and U. Selyak for performing numerous CMBFAST
runs necessary for this work.
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we neglected in (90) an extra phase shift proportional to B. The other reason is
that we underestimated the parameter �, which was derived in the assumption of
instantaneous recombitation. In reality the recombination takes place within about
quarter of the cosmological time and in the process of recombination the baryons
decouple from the radiation. As a result the sound speed increases and � should
be a bit bigger compared to (82).

However the main value of the analytical result is not in its competitive
accuracy with the numerics, but rather because it allows us to understand the
main features of the CMB spectrum and study explicitly how do they depend on
the cosmological parameters. In turn it gives us the possibility to understand the
degeneracy of the spectrum with respect to the combination of the cosmological
parameters which could lead to a “cosmic confusion.”

7. DETERMINING THE COSMOLOGICAL PARAMETERS

Let us discuss the main features of the spectrum and find out how they change
when the cosmological parameters vary. These parameters are the amplitude B
and the slope n of the primordial spectrum, the baryon density characterized by
�b, the total cold matter density �m , the cosmological constant ��, and the
Hubble constant h75. The amplitude and the slope of the primordial spectrum can
already be determined with a reasonably good accuracy when we consider only
the measurements in big angular scales. From these observations it follows that
the spectrum does not deviate too much from the scale invariant (n = 1). The
cosmic variance, which is important in the big angular scales not “disturbed by the
transfer functions,” does not allow us to conclude anything about small deviations
from scale invariant spectrum predicted by inflation on the basis of only these
observations.

The results for the fluctuations in small angular scales were derived assuming
a flat universe, where �m + �� = 1, and a scale invariant spectrum with n = 1.
How they change when the spectrum deviates from the scale invariant will be
pointed out below. First, I would like to concentrate on flat models with scale in-
variant spectrum (n = 1) and find out how the characteristic features of the CMB
spectrum depend on the cosmological parameters �b, �m , and h75 (the cosmolog-
ical constant is fixed by the flatness condition to be �� = 1 − �m).

7.1. The Location of the Peaks and the Flatness of the Universe

The most interesting feature of the spectrum is the presence of the peaks
and valleys the height and location of which very sensitively depend on the major
cosmological parameters. At l > 1000 the fluctuations are strongly suppressed
and therefore the most interesting part of the spectrum is those one where the
first three peaks are located. These peaks arise as a result of superimposing of the
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oscillating contribution to the fluctuations O , given by (92), on the “hill” N (l) =
N1 + N2 + N3 representing a nonoscillating part of the spectrum (see Fig. 1). It is
clear that the locations and the heights of the peaks relative to the valleys depends
not only on the oscillating part of the spectrum but also on the shape of the “hill.”
Let us neglect for a moment the effect of the “hill shape.” In this case the location
of the peaks would be determined by the superposition of two cosines in (92). If
|A1|  A2 the peaks should be located at

ln = π�−1

(
n − 1

8

)
, (101)

where n = 1, 2, 3 . . . , and � are given by (83). The first term in (92) has twice
bigger period than the second and its amplitude A1 is negative. Therefore it par-
ticipates in the constructive interference for the odd peaks (n = 1, 3, . . . ) and in
destructive interference for the even peaks (n = 2, 4, . . . ). Moreover, because of
the shift of the arguments of two cosines, the maxima of these two cosines do not
coincide and as a result, for instance, first and third peaks (for which the inter-
ference is constructive) should be located in between the appropriate maxima of
these two cosines, that is,

l1 �
(

6

8
÷ 7

8

)
π�−1, l3 �

(
2

6

8
÷ 2

7

8

)
π�−1. (102)

If |A1| � A2 the peaks move closer to the lower bounds of the intervals in (102).
In fact, the situation is more complicated because the nonoscillating contribution
N is not constant but is represented by “hill.” As it is clear from Fig. 1, this
leads to the further shift of the peaks to the “top of the hill.” For instance, for
concordance model first peak moves a bit to the right while the third peak to
the left. Substituting ξ � 0.6 and �mh2

75 � 0.26 into (82), we find that for this
model the first peak should be located at l1 � 225 ÷ 265 and the third peak at
l3 � 825 ÷ 865. Because of the reasons I mentioned above, this result should be
corrected by about 10% shifting the first peaks to the left.

In the region of the odd peaks one has destructive interference of the oscillating
terms. The first term in (92), which takes the minimal (negative) value, tries to
annihilate these peaks. The second peak (if it exists at all) should be located at

l2 �
(

1
6

8
÷ 1

7

8

)
π�−1 (103)

or at l2 � 525 ÷ 565 in the concordance model.
How sensitive is the peaks location to the variation of the cosmological pa-

rameters? According to (82) (see also (84)), � changes when the baryon and
cold matter densities vary and therefore (see (102) and (103)) the peaks loca-
tion should also depend on these parameters. The parameter � changes not very
much as a function of �mh75, and ξ . Therefore, the location of the first peak
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in a flat universe is relatively stable when we vary these parameters. In partic-
ular, when the baryon density increases in two times (ξ � 0.6 → ξ � 1.2) the
first peak moves to the right by �l1 ∼ +20 and the shift of the second and third
peaks are, respectively, �l2 ∼ +40 and �l3 ∼ +60. When determining the loca-
tion of the peaks, the baryon density always enters in combination ξ ∝ �mh2

75 with
the Hubble constant. The cold matter density comes together with h75 as �mh3.1

75 .
The increase of the cold matter density has an effect opposite to the increase of the
baryon density, namely, if for given ξ � 0.6 the cold matter density increases twice
(�mh3.1

75 � 0.3 → �mh3.1
75 � 0.6), the first peak goes to the left by �l1 ∼ −20 and

respectively �l2 ∼ −40 and �l3 ∼ −60. Thus we see that even in a flat universe,
one can shift the location of the first peak quite substantially (�l1 ∼ −40) in-
creasing the baryon density twice and simultaneously decreasing the cold matter
density by the same factor with respect to concordance model values.

Why in this case can we be sure the first peak location is a good indicator of the
universe curvature? Fortunately, if we fix the height of the first peak, then its loca-
tion becomes “stable” with respect to the admitable variations of the cosmological
parameters. The height of the first peak sensitively depends on the cold matter
and baryon density. Given the height of this peak, we can still vary the baryon
and cold matter densities together. However if the cold matter density would in-
crease and we would like still to keep the height of the peak to be the same, we
have simultaneously change the baryon density, namely, it should increase. Since
the change of the baryon and cold matter densities have opposite effects on the
peak location, it will be shifted not very much if both of them increase simultane-
ously. For instance, if the both densities increase by a factor 2 around concordance
model, one can expect that (�l1 ∼ 0). This explains the stability of the location of
the first peak for the acceptable range of change of the cosmological parameters
in flat universe. The obtained result on the location of the first Doppler peak and
its relative stability to the variation of the unknown cosmological parameters in
a flat universe is a fair agreement with the numerical calculations. This stability
makes the location of the first peak an irreplaceable indicator of the total energy
density of the universe. Actually, the peak location is incomparably more sensitive
to the total energy density (in the open universe without cosmological constant
l1 ∝ �

−1/2
tot ). The present observations strongly favor a fiat universe (�tot = 1) as

it is predicted by inflation.

7.2. Height of the Peaks and the Baryon and Cold Matter Densities

In concordance model the first acoustic peak is in about 7 ÷ 8 times higher
than the fluctuations in the large angular scales. Substituting ln , given by (102)
and (103), into (87) and using the formula (82) for �, we see that the factor I� is
cancelled in the expression for P and therefore the height of the peaks given by
(100) estimated at ln can depend only on �mh2

75 and �bh2
75 (or ξ ). If, for fixed
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�mh2
75, one increases the baryon density, the height H1(�mh2

75, ξ ) also increases.
In the concordance model the increase of the baryon density by factor 2 (from
ξ � 0.6 to ξ � 1.2) leads to the increase of the amplitude H1 by 1.5 times. This
increase in the amplitude is mostly due to the two terms in (100), N1 (proportional
to ξ 2) and O (since A1 ∝ ξ ). In turn, the increase of the cold matter density (at
fixed ξ )suppresses the height of the first peak H1. It is clear if we note that at fixed
l, the function P entering the formulae for fluctuations decreases when �mh2

75
increases. As a result the overall amplitude of the first peak decreases (mainly
because N2 and N3 contributions decrease when �mh2

75 increases). Therefore
the height of the first peak is degenerate with respect to a certain combination of the
baryon and cold matter densities. In a certain range of parameters the increase of the
height due to baryon density can be compensated if we simultaneously increase
the cold matter density. However, if the baryon density would be increased too
much, then the increase in the height of first peak could not be anymore compen-
sated by the simultaneous increase in �mh2

75 because �mh2
75 cannot much exceed

unity. (Moreover, for big �mh2
75 the transfer functions responsible for �mh2

75-
dependence of H1 reach their asymptotic values for those kηeq which mainly
contribute to the fluctuations in the region of the first peak and do not change after
that). Hence, just relying on the result about the height of the first peak, one can
safely conclude that the baryon density cannot be more than 15 ÷ 20% of the total
critical density.

The degeneracy in determining �mh2
75 and ξ parameters can be easily re-

solved if we consider the second peak, which results mostly from the destructive
interference of the oscillating terms in (92) superimposed on the “hill” given by
N -contribution. In the concordance model this peak is strongly suppressed in O-
contribution and partially recovered only in the resulting spectrum because of the
N—contribution (as one can see in Fig. 1 the “hill” has a sufficiently steep de-
cline in this region). The presence of the second peak essentially depends on the
ratio of the amplitudes A1 and A2. Since the amplitude A1 of the first term in
(92), which tries to “kill” the peak is proportional to the baryon density ξ , while
A2 slightly decreases when ξ grows, one can expect that the presence of a large
amount of baryons should diminish and may even completely remove the sec-
ond peak. Actually in the concordance model the “O-contribution” to the peak
disappears already when the baryon density increases just twice. However, in the
resulting spectrum this peak still survives. This is because the growing amount of
the baryons simultaneously amplifies N1-contribution to nonoscillating part of the
spectrum and in turn this significantly steepens the “hill” in the region where the
second peak is located. The analytical formulae become inapplicable at very high
baryon densities. However the numerical calculations show that for �mh2

75 � 0.26
the second peak is still present and has nearly the same amplitude as the third peak
even if baryons constitute about 70% of all cold matter. Hence the presence of
the second peak cannot alone be considered as the indication of the low baryon
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density. Nevertheless, in combination with the observed height of the first peak
the second peak is a very sensitive indicator not only for the baryon density, but
also for total cold matter density. Given the height of the first peak, we can still
vary the baryon and cold matter densities simultaneously increasing or decreasing
them, since they “act in opposite directions.” However it is not the case for the sec-
ond peak. The simultaneous increase of the baryon and cold matter densities tries
to “annihilate this peak”. Actually, the amplitude of the second peak depends on
the amplitudes A1(ξ , �mh2

75) and A2(ξ , �mh2
75) in superposition of two cosines

in (92). The increase of the baryon density tends to “kill” this second acoustic
peak. The increase of the cold matter density at fixed ξ has a similar effect. This
is because A2 ∝ (T 2

o )x=1 decreases faster than A1 ∝ (ToTp)x=1 when �mh2
75 in-

creases. At big �mh2
75 the term which “kills the peak” dominates. Hence the height

of the second peak depends simultaneously on the baryon and total cold matter
densities and is very sensitive to the independent variation of both of them. Fixing
the relation between ξ and �mh2

75 from the height of the first peak, we can find the
particular values of these parameters measuring the height of the second acoustic
peak. For instance, if �mh2

75 = 1, then ξ should be about unity if one wants to get
the height of the first peak to be in agreement with observations. In this case second
peak would completely disappear. Hence the experimental detection of the second
peak proves that the total density of the cold matter is smaller than the critical one
and the baryon density is smaller than 6 ÷ 8%. This is in an excellent agreement
with nucleosynthesis bounds. Shortly both of the results could be formulated as
“too much baryons would destroy all the deuterium and kill the second acoustic
peak.” In combination with the location and height of the first peak the presence
of the second peak is also a strong independent indicator on the dark energy in the
universe. In fact, from the location of the first peak it follows that the total density
in the universe is critical and the presence of the second peak means that the cold
matter can constitute only the fraction of it.

Since the heights and locations of the peaks depend on the different combi-
nation of �m and h75, this allows us to resolve the degeneracy in determining the
Hubble constant. As we have seen for a given �bh2

75, the location of the peaks
depends on �mh3.1

75 , while their heights is determined by �mh2
75. Therefore keep-

ing �bh2
75 and �mh2

75 to be fixed by the heights of the peaks, we can still vary the
Hubble parameter h75 shifting the position of the peaks. As it follows from (102)
and (84), for the given �bh2

75 � 0.04 and �mh2
75 � 0.3 the increase of the Hubble

constant by 20% (say from 70 to 85 km/s · Mpc) moves the peaks to the left by 3%,
that is, �l1 � 7 and �l2 � 15. Hence if we want to get an accurate determination
of the Hubble constant from CMB spectrum alone, we have to know the location of
the peaks with very high accuracy. If the location of the peaks is determined with
1% accuracy, then the expected accuracy of the Hubble constant will be about 7%.

Up to now we were assuming that the primordial spectrum of the inhomo-
geneities is scale invariant, that is, the spectral index is n = 1. The inflation predicts
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that there should be deviations from the scale invariant spectrum and we expect
that n � 0.92 ÷ 0.97. The above derivation for the CMB fluctuations can be easily
modified to account for these deviations.

If n �= 1 the obtained amplitudes of the fluctuations at given l should be
just multiplied by the factor proportional to l1−n . To resolve the degeneracy in
determining the cosmological parameters in this case, the heights and location of
the first two peaks are not sufficient. Actually for a given n, one can always find
the combination of the �bh2

75 and �mh2
75 parameters to fit the heights of the first

two peaks. The location of these peak is also not very sensitive to the deviations
of the spectral index from unity. Therefore one needs extra information. With this
purpose we can use, for instance, the height of the third acoustic peak. As one can
check the height of this peak is not so sensitive to �bh2

75 and �mh2
75 as for the first

two peaks. Fixing these parameters and varying the spectral index n for a given
unchanged height of the first peak (this can always be done if together with n we
vary the amplitude of the spectrum B), we find that the relative height of the third
peak changes as

�H3

H3
∼

(
l3

l1

)l−n

− 1. (104)

For instance, if n � 0.95 the height of the third peak increases by about 5% com-
pared to the case of n = 1. From this estimate one can get a rough idea about
necessary accuracy of the measurements to find the expected deviations from the
scale invariant spectrum.

8. CONCLUSIONS

Thus I have shown that assuming the cosmological model is known, we can
completely resolve the degeneracy and determine the main cosmological parame-
ters from the CMB spectrum. For that we just need to know the main features of
the spectrum, namely, the heights and location of the peaks. Of course the accuracy
of the determination is different for the different parameters and seems to be the
worst for the Hubble constant. The information we gain in the observation exceeds
the discussed features of the spectrum. Namely one measures also the entire shape
of the spectrum, which of course also depends on the cosmological parameters.
The necessity to fit this shape restricts the possible values of the parameters even
in a case when we have the measurements only in the region of the first peak. This
shape (as well as the heights and location of the peaks) also depends on the dissipa-
tion scales lf and lS , which in turn slightly depend on the cosmological parameters.
For the concordance model lS ∼ 1000, it is clear that the dissipation does not influ-
ence very much the first peak and becomes very essential in the region the second
peak and at high l. In particular at l > 1000 this effect entirely dominates leading
to the exponential falloff of the spectrum at very high multipoles. This falloff is
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very sensitive to the parameters and being measured can give us extra information
about them. The measurements of the polarization provides extra valuable infor-
mation about the cosmological parameters. The detailed behavior of the spectrum
when we vary the parameters is of course more complicated than we described
above (also I neglected here the primordial gravity waves which can give rather
substantial contribution at l < 30). However, our consideration correctly reflects
the main features of this behavior and gives the physical understanding why the
CMB spectrum so sensitively depends on the cosmological parameters. Of course
if the cosmological model we assumed is wrong then, in spite of the fact that some
features of the spectrum can be fitted, we will fail in reproducing the shape of
the spectrum measured with high accuracy.
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APPENDIX A: HYDROGEN RECOMBINATION

The equilibrium description of recombinations by Saha’s formula fails nearly
immediately after the recombination begins and a few percent of hydrogen becomes
neutral. Therefore one has to use the kinetic approach to describe the noninstan-
taneous (delayed) recombination (Peebles, 1968; Zel’dovich et al., 1968).

The direct recombination to the ground state with the emission of one en-
ergetic photon is not very efficient. The emitted photon has enough energy to
immediately ionize the first neutral hydrogen atom it meets. One can easily check
that the two competing processes, recombination and ionization, occur with a very
high rate leaving no net contribution (Peebles, 1968; Zel’dovich et al., 1968). More
efficient is the cascade recombination when the neutral hydrogen is first formed in
the excited state and then goes to the ground state. However, even in the cascade re-
combination at least one very energetic photon is emitted. Its energy corresponds to
the energy difference between 2p and 1S states. This Lyman-alpha photon (Lα) has
the energy 3BH/4 ⇒ 117000◦ K and a rather big resonance absorption cross sec-
tion which at the recombination temperature is aboutσα � 10−17 ÷ 10−16 cm2. The
Lα photons are reabsorbed in τα � (σαnH )−1 ∼ 103 ÷ 104 s after emission. This
time has to be compared to the cosmological time. During the matter domination
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epoch the cosmological time can be easily expressed through the temperature if
we just equate the energy density of the cold particles to the critical energy density
εcr = 1/(6π t2) and note that T = Tγ 0(1 + z); hence

tS � 2.75 × 1017
(
�mh2

75

)−1/2
(

Tγ 0

T

)3/2

, (105)

where h75 is the Hubble constant normalized on 75 km/s · Mpc, Tγ 0 � 2.72 and
�m is the contribution of cold matter to the critical density. At the moment of the
recombination τα  tc ∼ 1013 s and the Lα quanta are not significantly redshifted
before they are reabsorbed. Therefore below I will neglect the redshifts of these
quanta, which could in principle take them outside of the resonance line. The pres-
ence of the big number of Lα photons leads to an overabundance of the electrons
(e), protons (p), and 2s, p states of the neutral hydrogen atom, compared to what
is predicted by the equilibrium Saha’s formula. This leads to the delayed recombi-
nation and for a given temperature the actual degree of the ionization exceeds its
equilibrium value given by Saha’s formula. The full system of the kinetic equa-
tions describing the recombination is rather complicated and can be solved only
numerically. Here I will present the useful approximate treatment of this process,
which is in a very good agreement with the results of the numerical calculations
after about 10% of neutral hydrogen is formed.

I neglect all highly excited hydrogen states so that the main “players left in
the game” will be 1s, 2s, 2p states together with the electrons, protons, thermal
photons, Lα and other energetic quanta emitted during recombination. The main
processes, involving these components, are symbolically shown in Fig. 2. They are
responsible for the “converting elements” and bring them from one “reservoir” to
the other changing the appropriate concentrations. First note that we can neglect
the recombination directly to the ground state since they do not lead to any net
change in the system and leave the concentrations in the appropriate “reservoir”
in Fig. 2 without change.

Second, the thermal radiation is still very efficient and plays the dominant role
in the ionization of the excited hydrogen atom 2s, p states (at least, at the begin-
ning of recombination). Actually to ionize the excited hydrogen atom the energy
of the photon should be only one quarter of the binding energy BH . The number of
such photons is still bigger than the number of highly energetic photons emitted in
recombination acts and therefore considering the ionization of the excited atoms
one can safely ignore the distortions of the thermal radiation spectrum. Opposite
to this, these thermal quanta do not play any essential role in the transitions be-
tween 1s and 2p, s states. The transitions 1s → 2p are mostly due to Lα quanta
which at the beginning of recombination are present in the same amount as the
neutral atoms in the ground state. After the degree of ionization significantly drops,
the free electrons and the excited states are overabundant compared to what we
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Fig. 2.

would expect according to the equilibrium Saha’s formula. This is why we can ne-
glect 1s + γ + γ → 2s transitions compared to the two-photon decay of 2s state:
2s → 1s + γ + γ . The probability of this process (W2s→1s � 8.23 s−1) is much
smaller than the probability of 2p → 1s + Lα decay (W2s→1s � 4 × 108 s−1).
Nevertheless, this process (at least at the beginning) plays the dominant role in the
nonequilibrium recombination being, in fact, responsible for the net change of the
concentrations of all “elements.”

The Lα quanta emitted in 2p → 1s transitions are fast reabsorbed by the
hydrogen atoms in the ground state, and these atoms go back to the “2p-reservoir.”
Therefore, the main source of the irreversible “leakage” from “e, p to 1s–reservoir”
is the two quanta decay via 2s levels and the net change of the electron concentration
is mainly due to this process. All other processes return the “escaped” electrons
very fast back to “e, p−reservoir.” Hence, the rate of the overall decrease of the
electron concentration (which is equal to the increase of the neutral atoms in the
ground state) due to the two-photon decay of 2S states is

d Xe

dt
= −d X1s

dt
= −W2s X2s , (106)

where the relative concentrations Xe = ne/nt , X2s ≡ n2s/nt have been introduced;
here nt is the total number density of all neutral atoms plus electrons. I would
like to stress once more that Eq. (106) ignores all other processes, besides of
2s → 1s + γ + γ decay, which could lead as a final outcome to the neutral
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hydrogen atoms in the ground state. As we will see later, this assumption is
valid until the degree of the ionization drops to rather small values. After that,
at the end of recombination, when some other processes (in addition to two
quanta decay) become important, I will correct the main equations to account for
them.

To express X2s through Xe, let us use the quasi-equilibrium condition for “2s-
reservoir.” The rates of the reactions depicted in Fig. 2 are very high compared
to the rate of the expansion. Therefore the concentrations of the elements in the
“reservoirs” quickly adjust their quasi-equilibrium values which are determined
by the condition that the “net flux” for an appropriate “reservoir” should be equal
to zero. For 2s− reservior” this condition takes the following form:

〈σv〉ep→γ 2snen p − 〈σ 〉γ 2s→epneq
γ n2s − W2s→1sn2s = 0, (107)

where 〈σv〉 are the effective rates of the appropriate reactions and neq
γ is the number

density of the thermal photons. The relation between the cross sections of the direct
and inverse reactions can be easily found if one notes that in the state of equilibrium
these reactions should compensate each other; hence

〈σ 〉γ 2s→epneq
γ

〈σv〉ep→γ 2s
= neq

e neq
p

neq
2s

=
(

Tme

2π

)3/2

exp

(
− BH

4T

)
, (108)

where in the second equality I used Saha’s formula and took into account that the
binding energy of 2s state is BH/4. Using this relation, we can express X2s from
(107) as

X2s =
(

W2s

〈σv〉ep→2s
+

(
Tme

2π

)3/2

exp

(
− BH

4T

))−1

nt X2
e . (109)

Substituting this expression into (106), we obtain

d Xe

dt
= −W2s

(
W2s

〈σv〉ep → 2s
+

(
T me

2π

)3/2

exp

(
− BH

4T

))−1

nt X2
e . (110)

When the first term inside the bracket is smaller than the second one, the elec-
tron and excited states of hydrogen atoms are in equilibrium with each other and
with thermal radiation. In this case the last term in Eq. (107) is smaller than the
other terms and the relative concentrations of e, p, and 2s states still satisfy the
appropriate Saha relation (r.h.s. equality in (108)). Of course, it does not mean
that the ionization degree in this case is given by the equilibrium Saha’s formula,
which is derived under assumption that 1s state is also in thermal equilibrium with
the other states. However, as I already mentioned, the ground state drops out of
equilibrium with the other levels soon after recombination begins and there is an
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overabundance of the atoms in the excited states compared to what one would
expect according to the equilibrium Saha’s formula.7

The rate of the recombination to 2s level is well approximated by the formula
(see, for instance, Peebles, 1993):

〈σv〉ep→γ 2s � 6.3 × 10−14

(
BH

4T

)1/2 cm3s−1

v
(111)

and one can easily verify that two terms inside the brackets in (109) becomes com-
parable at the temperature � 2450◦ K. Hence only at the temperatures higher than
2450◦ K the e − p recombination processes are faster than the two photon decay
and thermal radiation is efficient in keeping the chemical equilibrium between e,
p and 2s states.

As long as the temperature drops below this value, the photoionization of 2s
states becomes less efficient than their two quantum decay. The radiation does not
play essential role anymore and the quasi-equilibrium concentration of 2s states is
regulated by the balance of the recombination rate to 2s levels and their two quanta
decay rate (the second term in Eq. (107) can be neglected compared to the third
one). In this case the second term inside the brackets in (110) is smaller than the
first one and the rate of recombination due to the leakage of the electron from “e,
p–reservoir” through 2s reservoir is proportional to 〈σν〉ep → γ 2snt X2

e and does
not depend on W2s . It is entirely determined by the rate of the recombination to 2s
level. At the same time 2p states also drop out equilibrium with electrons, protons,
and thermal radiation and most of Lα are destroyed in two quanta decays. As a
result the “e, p → 2p → 1s−channel” becomes also efficient in converting the
free electrons and protons into the neutral hydrogen and increases the “ leakage of
the electrons from e, p−reservior.” Moreover, nearly every recombination act in
one of the excited states leads to the formation of the neutral hydrogen atom. This
effect is relevant only at the late stages of recombination and can be easily taken into
account if in (110) we substitute instead of 〈σv〉ep→γ 2s the rate for recombination
to all excited states, which is well approximated by the fitting formula (see, for
instance, Peebles, 1993)

〈σv〉rec � 8.7 × 10−14

(
BH

4T

)0.8

cm3s−1. (112)

It is convenient to rewrite Eq. (110) using instead of temperature and cosmological
time, related to the temperature via (105), the redshift parameter z + 1 = T/Tγ 0.
Substituting the numerical values for the reaction rates and the number density nt

7 At the beginning of recombination the rate of change of the hydrogen atoms in 1s state is proportional
to W2s→1sn2s . This rate is much smaller than the rate of the reactions ep →← γ 2s, determining the
concentration of 2s states.
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in the obtained equation after elementary calculations, we get

d Xe

dz
= 15.3

�bh75√
�m

(
0.72

( z

14400

)0.3
+ 104z exp

(
−14400

z

))−1

X2
e , (113)

when we neglect the unity compared to z. This equation can be easily integrated:

Xe(z) = 6.53 × 10−2

√
�m

�bh75

×
(∫

z

dz

(0.72(z/(1.44 × 104))0.3 + 104z exp(−1.44 × 104/z))

)−1

. (114)

One can easily verify that the solution Xe(z) is not very sensitive to the “initial
conditions” which could be taken at zin > z (for instance, at T � 3500◦ k), when
Xe(zin) � Xe(z). The main contribution to the integral in this case give z < zin.
At z > 900 (appropriately at the temperature T > 2450◦ K) the first term inside
the bracket in the integrand can be neglected. In this case, the expression (114) is
well approximated by the formula (Sunyaev and Zel’dovich, 1970)

Xe(z) � 9.1 × 106

√
�m

�bh75
z−1 exp

(
−14400

z

)
(115)

and the overall rate of the recombination is completely determined by the rate
of two quanta decaly. It is clear from the derivation of (114) that this formula
and, correspondingly (115), are applicable only when the degree of ionization
drops significantly below unity and the deviations from the full equilibrium be-
come quite substantial. As a rough criterion for the applicability of these formulae,
let us take the moment when the concentration of the neutral hydrogen reaches
about 10%. According to (115) for the realistic values of the cosmological param-
eters: �mh2

75 � 0.3 and �bh2
75 � 0.03 this happens at z ∼ 1220 (appropriately

T ∼ 3300 ÷ 3400◦ K). Therefore in this case the range of applicability of (115) is
not very big, namely, 1200 > z > 900. However during this time when the tem-
perature drops only from 3400 to 2450◦ K, the degree of ionization decreases very
substantially; at T � 2450◦ K it constitutes Xe(900) � 2 × 10−2. It is interesting
to compare this result to the prediction of the equilibrium Saha’s formula. Accord-
ing to the equilibrium Saha’s formula Xe(3400◦ K) ∼ 10−1 and Xe(2450◦ K) ∼
10−5 that is, at z � 900 the ionization degree exceeds the equilibrium one more
than in thousand times. Hence, the deviation from the equilibrium very essentially
delays the recombination process. The other interesting thing is that the equilib-
rium ionization degree depends only on the baryon number density, while in (114)
enters also the density of the cold matter. It is not surprising, since the cold matter
determines the rate of the cosmological expansion which is very important for
kinetics when the deviations from equilibrium become essential.
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When the temperature drops below 2450◦ K at z < 900, the approximate
formula (115) is not valid anymore and we have to use (114). The degree of ion-
ization first continues to drop and finally freezes out; for instance, for �mh2

75 � 0.3
and �bh2

75 � 0.03 the formula (114) gives Xe(z = 800) � 5 × 10−3, Xe(400) �
7 × 10−4, and Xe(100) � 4 × 10−10. To calculate the freeze-out concentration we
note that the integral in (114) converges for z = 0 and is about 4 × 103; hence

X f
e � 1.6 × 10−5

√
�m

�bh75
. (116)

After ionization degree drops below unity the approximate results given (114)
and (115) are in very good agreement with the numerical solutions of the kinetic
equations, while Saha’s approximation does not reproduce the ionization behavior
even roughly.

At the beginning of recombination most of the neutral hydrogen atoms were
formed as a result of the cascade transitions and the number of Lα photons was
about the same as a number of hydrogen atoms. What happens with all these Lα

photons afterwards? Will they survive and, if so, could we observe them today
as an appropriately redshifted narrow line in the spectrum of CMB? During the
recombination the number density of the Lα quanta nα is determined by the quasi-
equilibrium condition for “Lα- reservoir”

W2p→1sn2p = 〈σα〉nαn1s . (117)

Since n1s ≈ nt and n2p ∝ X2
e , we see that the number of this quanta drops along

with the ionization degree. Thus, nearly all Lα photons which emerged at the
beginning disappear because they are “de facto” destroyed because of the photon
decay of 2s states. Therefore there will be no sharp line in the primordial radiation
spectrum. Nevertheless as a result of the recombination this spectrum will be
significantly warped in the Wien region. Unfortunately, the spectrum distortions
lie in those part of the spectrum, where they are strongly saturated by the radiation
from the other astrophysical sources and one cannot observationally verify this
important consequence of the hydrogen recombination.

Finally let us find when the universe becomes transparent for the radiation.
It happens when the typical time between the photon scattering starts to exceed
the cosmological time. Raleigh’s cross section for the scattering on the neutral
hydrogen is negligibly small and, in spite of their low concentration, the main role
in opaqueness play the free electrons. The cross section of the scattering on free
electron is equal to σT � 6.65 × 10−25 cm2 and the equation defining the moment
of the radiation decoupling takes the form:

1

σT nt Xe
∼ tcosm. (118)
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This equation can be rewritten as

Xdec
e ∼ 40

√
�m

�bh75

(
Tγ 0

Tdec

)
s3/2. (119)

By “try-out” one can easily check that the decoupling happens at Tdec ∼
2500◦ K (the corresponding redshift zdec ∼ 900) irrespective how big are the values
of the cosmological parameters. If �mh2

75 � 0.3 and �bh2
75 � 0.03 the ionization

degree at this moment is about 8 2 × 10−2.

9. APPENDIX B: ASYMPTOTICS OF THE TRANSFER FUNCTIONS

The resulting fluctuations of the background radiation depend on the grav-
itational potential  and energy density fluctuation in the radiation component
δγ ≡ δεγ

/εγ at the moment of recombination. To determine these quantities, we
have to study the gravitational instability in two component media consisting of
coupled baryon radiation plasma and cold dark matter. Because they interact only
gravitationally their EMTs conserve separately. In the cosmological conditions the
shear viscosity cannot be neglected for the baryon radiation plasma and leads to the
dissipation of perturbations in small angular scales (Silk damping). For imperfect
fluid with energy density ε and pressure p, one can use the energy-momentum
tensor given in Weinberg (2001, 2002).9 Then one can find that in homogeneous
universe with small perturbations described by the metric (7) the conservation laws
T α

β;α = 0 in the first order in perturbations reduce to10

δε′ + 3H(δε + δp) − 3(ε + p)′ + a(ε + p)ui
,i = 0, (120)

1

a4

(
a5(ε + p)ui

,i

)′ − 4

3
η�ui

,i + �δp + (ε + p)� = 0, (121)

where δε, δp are, respectively, the perturbations of the energy density and pressure;
ui is the peculiar 3-velocity and η is the shear viscosity coefficient. Note that the
first equations which follow from T α

0;α = 0 does not contain the shear viscosity.
The second equation was obtained taking the divergence of the equations T α

i ;α = 0.
As it was already noted, these two equations are separately valid for the dark matter
and the baryon-radiation plasma components.

Dark matter. For dark matter, the pressure p and the shear viscosity η are
both equal to zero. Taking into account that εda3 = const we obtain from (120)
that the fractional perturbation in the energy of dark matter component δd ≡ δεd/εd

8 It is rather interesting to note that this time coincides with the moment when e, p, and 2s levels
come out of equilibrium and the approximate formula (115) becomes inapplicable.

9 I will neglect the heat conduction since it does not change substantially the Silk damping scale.
10 One can check that the difference between the potentials  and � due to off-diagonal spacial

components of EMT is negligible in the interesting-for-us scales.
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satisfies the equation

(δd − 3)′ + aui
,i = 0. (122)

If we express ui
,i in terms of δd and  and substitute into (121), then the resulting

equation takes the following form:

(a(δd − 3)′)′ − a� = 0. (123)

Radiation–baryon plasma. The baryons and radiation are tightly coupled
before recombination and, therefore, generically only the sum of their energy-
momentum tensors satisfies the conservation laws (120) and (121). Nevertheless,
in particular case when the baryons are nonrelativistic, Eq. (120) is still valid sep-
arately for the baryon and radiation components because the energy conservation
law for the baryons, T α

0;α = 0, reduces in this case to the conservation law for
the total baryon number. (Of course this is not true for for (121) since baryons
and radiation “move together” and there is momentum exchange between these
components). Hence, the fractional density fluctuations in baryons, δb ≡ δεb/εb,
satisfies the equation similar to (122):

(δb − 3)′ + aui
,i = 0. (124)

As it follows from (120) the corresponding equation for the perturbations in the
radiation component, δγ ≡ δεγ /εγ takes the form

(δy − 4)′ + 4

3
aui

,i = 0. (125)

Since the photons and baryons are tightly coupled, their velocities are the same.
Therefore multiplying (125) by 3/4 and subtracting Eq. (124), we obtain

δs

s
≡ 3

4
δγ − δb = const, (126)

where δs/s are the fractional entropy fluctuations in the baryon-radiation plasma.
For adiabatic perturbation, δs = 0 and, therefore, we have

δb = 3

4
δγ . (127)

If we express ui
,i in terms of δγ and  from (125) and substitute into (121), we

obtain (
δ′
γ

c2
S

)
− 3η

εγ a
�δ′

γ − �δγ = 4

3c2
S

� +
(

4

c2
S

′)
− 12η

εγ a
�′, (128)
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where � is the Laplacian and c2
S is the squared speed of sound in the baryon-

radiation plasma, which is equal to

c2
S ≡ δp

δε
= δpγ

δεγ + δεb
= 1

3

(
1 + 3

4

εb

εγ

)−1

. (129)

Without taking into account the polarization effects the shear viscosity coefficient
entering (128) is given by

η = 4

15
εγ τγ , (130)

where τγ is the mean free time for the photons.
Thus we derived two perturbation Eq. (123) and (128) which being supple-

mented by 0–0 component of the Einstein equations (Mukhanov et al., 1992)

� − 3H′ − 3H2 = 4πGa2

(
εdδd + 1

3c2
S

εγ δγ

)
(131)

form a closed system of equations for three unknown variables δd, δγ , and  (we
used (127) to express δb in terms of δγ ).

From (125) it follows the useful relation for only the radiation contribution
to the divergence of 0 − i components of the energy-momentum tensor,

T i
0,i = 4

3
εγ u0ui

,i = (4 − δγ )′εγ , (132)

which is used in (20).
Longwave perturbations (k  η−1

r ). The behavior of perturbations strongly
depends on how big their scales are as compared to the horizon. First I consider the
long wavelength perturbations with kηr  1 (k is commoving wave number) which
cross the horizon only after recombination. Knowing the gravitational potential
we can easily find δγ . In fact for this longwave perturbations one can neglect the
velocity term in Eq. (125), which after that can be easily integrated and we obtain

δγ − 4 = C, (133)

where C is the constant of integration. To determine C , we have just to note that,
during the radiation-dominated epoch, the gravitational potential is mostly due to
the fluctuations in the radiation component and and does not change on supercur-
vature scales. At the early times, δγ � −2(η  ηeq) ≡ −20 (see Mukhanov
et al., 1992); hence C = −60. After equality, when the dark matter overtakes the
radiation, the gravitational potential  changes its value by a factor of 9/10 and
then remains constant, that is, (η � ηeq) = (9/10)0. Therefore, if cold dark
matter dominates at recombination, it follows from (133) that

δγ (ηr ) = −60 + 4(ηr ) = −8

3
(ηr ). (134)
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One arrives at the same by noting that, for adiabatic perturbations, δγ = 4δd/3 and
δd � −2(ηr ) at recombination.

Intermediate scales (η−1
r < k < η−1

eq ). Next I consider the scales which enter
horizon in between the equality (ηeq) and recombination (ηr ). The perturbations
which enter horizon within this rather short time interval are especially interesting
since they are responsible for the first few acoustic peaks in the CMB spectrum.
Unfortunately, for the realistic values of the cosmological parameters the solution
for these perturbations cannot be found analytically with needed accuracy because
in the realistic models the condition ηeq  ηr is not satisfied. Nevertheless to gain
an intuition about behavior of the perturbations, it is very useful to consider the
models where ηeq  ηr and derive the appropriate asymptotic expressions for the
perturbations with η−1

r  k  η−1
eq . To simplify the consideration, I also assume

that the contribution of baryons to the gravitational potential is negligible compared
to the contribution of the cold dark matter.

In general, there exist four instability modes in the two-component medium.
The set of equations for the perturbations is rather complicated and they cannot
be solved analytically without making further assumptions. However in our case,
the problem can be simplified if we note that if the perturbation enters horizon
sufficiently late after equality (η � ηeq), the appropriate gravitationa potential,
which is mainly due to the perturbations in the cold dark matter component, remains
unchanged and stays constant afterwards (k(η) = const) (Mukhanov et al., 1992).
The baryons do not contribute much to the gravitational potential; however, they
can still significantly influence the speed of sound after equality.

Under assumption we made the gravitational potential  can be considered
as an external source in Eq. (128). Therefore, the general solution of this equation
is given by a sum of the solution of homogeneous equation (with  = 0) and the
particular solution of (128). Introducing the variable x defined by dx = c2

Sdη and
taking into account that the time derivatives of the potential (128) are equal to zero
( = const), we reduce the Eq. (128) to

d2δγ

dx2
− 4τγ

5a
�

dδγ

dx
− 1

c2
S

�δγ = 4

3c4
S

�, (135)

where the second term is due to the viscosity. If the speed of sound is slowly
varying, this equation has an obvious approximate solution

δγ � − 4

3c2
S

. (136)

The general solution of the homogeneous Eq. (135) can be obtained in the WKB
approximation. Let us consider the plane wave perturbation with comoving wave
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number k. Introducing instead of δγ the new variable

y ≡ δγ exp

(
2

5
k2

∫
τγ

a
dx

)
, (137)

we find from (135) that it satisfies the equation

d2 y

dx2
+ k2

c2
S

(
1 − 4c2

S

25

(
kτγ

a

)2

− 2c2
S

5

(τγ

a

)′
)

y = 0. (138)

For the perturbations with the scale (λph ∼ a/k) bigger than the mean free path
of the photons11 (∼ τγ ), the second term in brackets is negligible. The third term,
which is about τγ /aη ∼ τγ /t  1, can be also skipped. Therefore the WKB so-
lution for y is

y � √
cS

(
C1 cos

(
k

∫
dx

cS

)
+ C2 sin

(
k

∫
dx

cS

))
. (139)

Returning back to δγ (see (137)) and combining this solution with (136), we obtain

δγ � 4

3c2
S

k + √
cS

(
C1 cos

(
k

∫
cSdη

)
+ C2 sin

(
k

∫
cS dη

))
e−(k/kD)2

.

(140)

Here we have introduced the dissipation scale characterized by the comoving wave
number:

kD(η) ≡
(

2

5

∫ η

0
c2

S

τγ

a
dη

)−1/2

. (141)

In the limit of constant speed of sound and vanishing viscosity the solution (140)
is exact and valid also in the limit k → 0.

From (140), it is clear that the viscosity efficiently damps the perturbations on
comoving scales λ ≤ 1/kD. Using the formula (141) with c2

S = 1/3 and, assuming
instantaneous recombination, we obtain the following estimate for the dissipation
scales:

(kDηr )−1 � 0.6(�mh2)1/4(�bh2)−1/2z−3/4
r . (142)

The constants of integration C1 and C2 in (140) can be determined if we
note that at the earlier stages when the speed of sound does not change too much
the solution (140) is also valid when the scale of the perturbation still exceeds the
horizon scale. As we have found before the amplitude of the longwave perturbations
(kη  1) is equal to δγ � −8k/3 = const at η � ηeq. Assuming that at the

11 In fact, the imperfect fluid approximation can be used only in this case.
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moment when the perturbation enters the horizon the speed of sound is still not
very different from 1/

√
3 we find that C1 = 4/33/4 and C2 = 0; hence

δγ (η) =
[
− 4

3c2
S

+ 4
√

cS

33/4
e−(k/kD)2

cos

(
k

∫ η

0
cS dη′

)] (
9

10
0

k

)
(143)

for k  η−1
eq . Here we took into account that k = 90

k/10 and expressed the result
in terms of the initial gravitational potential on superhorizon scales before equality
0

k . The result (143) coincides with the result obtained by Weinberg (2001, 2002)
in synchronous coordinate system.

Shortwave perturbations (k � η−1
eq ). Finally I consider the perturbations

which enter the curvature scale before equality. At η  ηeq, radiation dominates
and the appropriate expressions for gravitational potential  and δγ for this case
were derived in Mukhanov et al. (1992). Neglecting the decaying mode,we find
that after the perturbation entered horizon, that is, at k−1  η  ηeq

δγ 60
k cos(kη/

√
3), k(η) � − 90

k

(kη)2
cos (kη/

√
3). (144)

The dissipation, which becomes important only before recombination, can be
treated similar to how it was done above. Therefore I neglect the dissipation term
here and restore the damping factors only in the final expressions.

After inhomogeneity entered the horizon, the cold dark matter starts “to slide”
with respect to the radiation. To get an idea about the behavior of the inhomo-
geneities in the cold dark matter component, we can use Eq. (123), which after
integration becomes

δd = 3 +
∫

dη′

a

∫
a� dη′′. (145)

Note that this is an exact relation which is always valid for any k. During the
radiation-dominated epoch, the main contribution to the gravitational potential
is due to radiation, and, therefore, the gravitational potential in Eq. (145) can
be treated as an external source. We can fix the constant of integration in (145)
substituting the exact solution for the radiation dominated universe (see (5.45)–
(5.46) in Mukhanov et al., 1992) and noting that, at earlier times on superhorizon
scales one has to match the well-known result for the longwave perturbations:
δd � 3δγ /4 � −30

k/2. As a result we obtain that after entering the horizon but
before eqality

δd � −9

(
C − 1

2
+ ln(kη/

√
3) + O((kη)−1)

)
0

k , (146)

where C = 0.577 . . . is the Euler constant. That is the perturbations in the cold
matter component are “frozen” (they grow only logarithmically).
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It is easy to see from (131) that, before equality, the contribution of the
dark matter perturbations to the gravitational potential is suppressed by a factor
εd/εγ compared to the contribution from the radiation component. At equality, the
dark matter starts to dominate and the density perturbation δd grows as ∝ η2 (see
Mukhanov et al., 1992). The appropriate gravitational potential “freeze-out” at the
value

k(η > ηeq) ∼ −4πGa2ε

k2
δd

∣∣
ηeq ∼ O(1)

ln(kηeq)

(kηeq)2
0

k (147)

and stays constant until the recombination. One can get the exact numerical co-
efficients in this formula in the following way. For shortwave perturbations, the
time derivatives of the gravitational potential in (123) and (131) can be neglected
compared to the spatial derivatives. In this case from these equations it follows
that

(aδ′
d)′ − 4πGa3

(
εdδd + 1

3c2
S

εγ δγ

)
= 0. (148)

The second term here induces the corrections to the solution (146) which become
significant only near equality. These corrections are mostly due to εdδd−term.
The term ∝ εγ δγ does not lead to essential corrections to the solution (146) before
equality and it is also negligible compared to εdδd−term afer equality. Therefore
it can be skipped in (148). As a result the obtained equation can be rewritten in
the following form,

x(1 + x)
d2δd

dx2
+

(
1 + 3

2
x

)
dδd

dx
− 3

2
δd = 0, (149)

where x ≡ a/aeq. The general solution of this equation is (see, for instance,
Weinberg, 2001, 2002)

δd = C1

(
1 + 3

2
x

)
+ C2

[(
1 + 3

2
x

)
ln

√
1 + x + 1√
1 + x − 1

− 3
√

1 + x

]
. (150)

At x  1 it should coincide with (146). Therefore comparing (150) with (146) at
x  1, we find

C1 � −9

(
ln

(
1 + 2kη∗√

3

)
+ C − 7

2

)
0

k , C2 � 90
k , (151)

whereη∗ = ηeq/(
√

2 − 1). During the matter dominated epoch (x � 1), the second
term in (150) corresponds to the decaying mode. Neglecting this mode, assuming
that the baryon contribution to the potential is negligible compared to the dark
matter and using the relation between the gravitational potential and δd (see (131))
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one finally gets

k(η � ηeg) � ln (0.15kηeq)

(0.27kηeq)2
0

k (152)

in agreement with Weinberg, (2001, 2002). The fluctuations in the radiation δγ

after equality continue to behave as sound waves in the external gravitational po-
tential given by (152). Therefore, they are described by (140), where we have to
substitute the potential (152) instead of 0

k . The constant of integration can be
fixed by comparing the oscillating part of this solution to the result in (144) at
η ∼ ηeq. Then, we find that at η � ηeq

δγ �
[
− 4

3c2
S

ln (0.15kηeq)

(0.27kηeq)2
+ 35/4

√
4cS cos

(
k

∫ η

0
cS dη

)
e−(k/kD)2

]
0

k (153)

for k � η−1
eq . We have restored here the Silk damping factor. During the radiation-

dominated epoch, the damping scale, which is proportional to the photon mean free
path, is very small. However, it increases just before the recombination and there-
fore the oscillating contribution to δγ is exponentially suppressed on small scales.
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